Respuesta :

Answer:

[tex]x=2^{\frac{2}{3}}[/tex]

Step-by-step explanation:

1) Add 8 to both sides.

[tex]2x^3=8[/tex]

2) Divide both sides by 2.

[tex]x^3=\frac{8}{2}[/tex]

3) Simplify [tex]\frac{8}{2}[/tex] to 4.

[tex]x^3=4[/tex]

4) Take the cube root of both sides.

[tex]x=\sqrt[3]{4}[/tex]

5) Rewrite 4 as 2².

[tex]x=\sqrt[3]{2^2}[/tex]

6) Use this rule: [tex]{({x}^{a})}^{b}={x}^{ab}[/tex].

[tex]x=2^{\frac{2}{3}}[/tex]

Decimal Form: 1.587401

__________________________________________

Check the answer:

[tex]2x^3-8=0[/tex]

1) Let [tex]x=2^\frac{2}{3}[/tex].

[tex]2(2^{\frac{2}{3} })-8=0[/tex]

2) Use this rule: [tex](x^a)^b=x^{ab}[/tex].

[tex]2\times2^{\frac{2\times3}{3} } -8=0[/tex]

3) Simplify 2 * 3 to 6.

[tex]2\times2^{\frac{6}{3} } - 8 =0[/tex]

4) Simplify 6/3 to 2.

[tex]2\times2^2-8=0[/tex]

5) Use Product Rule: [tex]x^ax^b=x^{a+b}[/tex].

[tex]2^3-8=0[/tex]

6) Simplify 2^3 to 8.

8 - 8 = 0

7) Simplify 8 - 8 to 0.

0 = 0

Thank you,

Eddie