Respuesta :

Answer:

Given linear function is:

[tex]y=-\frac{3}{4}x-6[/tex]

From the given options, let us check the value of y by substituting given value of x

Let x=-8

we get,

[tex]y=-\frac{3}{4}(-8)-6[/tex][tex]\begin{gathered} y=6-6=0 \\ y=0 \end{gathered}[/tex]

we get y=0, Hence the first and last table has differenct value for y, B oth are not the required table for the given equation

Let x=-4, we get

[tex]y=-\frac{3}{4}(-4)-6[/tex][tex]\begin{gathered} y=3-6 \\ y=-3 \end{gathered}[/tex]

we get y=-3, third table satisfies the condition.

Let us check the values of y by using remaining x values.

Let x=0,

we get,

[tex]y=-6[/tex]

This also satisfied, then let x=4

we get,

[tex]y=-\frac{3}{4}(4)-6[/tex][tex]\begin{gathered} y=-3-6 \\ y=-9 \end{gathered}[/tex]

This is also satisfied,

Hence the required table for the given linear equation is,

X. Y

-4. -3

0. -6

4. -9