Answer:
Given linear function is:
[tex]y=-\frac{3}{4}x-6[/tex]From the given options, let us check the value of y by substituting given value of x
Let x=-8
we get,
[tex]y=-\frac{3}{4}(-8)-6[/tex][tex]\begin{gathered} y=6-6=0 \\ y=0 \end{gathered}[/tex]we get y=0, Hence the first and last table has differenct value for y, B oth are not the required table for the given equation
Let x=-4, we get
[tex]y=-\frac{3}{4}(-4)-6[/tex][tex]\begin{gathered} y=3-6 \\ y=-3 \end{gathered}[/tex]we get y=-3, third table satisfies the condition.
Let us check the values of y by using remaining x values.
Let x=0,
we get,
[tex]y=-6[/tex]This also satisfied, then let x=4
we get,
[tex]y=-\frac{3}{4}(4)-6[/tex][tex]\begin{gathered} y=-3-6 \\ y=-9 \end{gathered}[/tex]This is also satisfied,
Hence the required table for the given linear equation is,
X. Y
-4. -3
0. -6
4. -9