Solving Quadratic Equations by Factoring1) ^2 + 12 + 32 = 02) 2^2 + 11 + 15 = 03) ^2 − 24 + 80 = 04) ^2 − 15 + 36 = 05) 4^2 + 16 + 7 = 0

Respuesta :

we have

^2 + 12 + 32 = 0

Complete the square

(x^2+12x+6^2-6^2)+32=0

(x^2+12x+36)-36+32=0

(x^2+12x+36)-4=0

REwrite as perfect squares

(x+6)^2=4

take the square root both sides

(x+6)=(+/-)2

x=-6(+/-)2

therefore

x1=-6+2=-4

x2=-6-2=-8

Part 2

we have

2^2 + 11 + 15 = 0

Factor 2

2(x^2+11/2x)+15=0

Complete the square

2(x^2+11/2x+121/16-121/16)+15=0

2(x^2+11/2x+121/16)-121/8+15=0

rewrite as perfect squares

2(x+11/4)^2=121/8-15

2(x+11/4)^2=(121-120)/8

2(x+11/4)^2=1/8

(x+11/4)^2=1/16

take square root both sides

(x+11/4)=(+/-)1/4

x=-11/4(+/-)1/4

therefore

x1=11/4+1/4=12/4=3

x2=11/4-1/4=10/4=2.5

Problem N 3

^2 − 24 + 80 = 0

Complete the square

(x^2-24x+144)-144+80=0

(x-12)^2=144-80

(x-12)^2=64

square root both sides

(x-12)=(+/-)8

x=12(+/-)8

therefore

x1=12+8=20

x2=12-8=4

Problem N 4

^2 − 15 + 36 = 0

(x^2-15x+225/4)-225/4+36=0

(x-15/2)^2=225/4-36

(x-15/2)^2=(225-144)/4

(x-15/2)^2=81/4

square root both sides

(x-15/2)=(+/-)9/2

x=15/2(+/-)9/2

therefore

x1=15/2+19/2=34/2=17

x2=15/2-19/2=-4/2=-2

Problem N 5

4^2 + 16 + 7 = 0

Factor 4

4(x^2+4x)+7=0

4(x^2+4x+4-4)+7=0

4(x^2+4x+4)=16-7

4(x+2)^2=9

(x+2)^2=9/4

square root both sides

(x+2)=(+/-)3/2

x=-2(+/-)3/2

therefore

x1=-2+3/2=1/2=0.5

x2=-2-3/2=-7/2=-3.5