Respuesta :

Answer:

1/2

Explanation:

Given a geometric progression with the following:

• The first term, a= -8

,

• The 6th term = -1/4

The nth term of a geometric progression is obtained using the formula:

[tex]\begin{gathered} U_n=ar^{n-1}\text{ where:} \\ a=\text{first term} \\ r=\text{common ratio} \end{gathered}[/tex]

Substitute the given values:

[tex]U_6=(-8)\times r^{6-1}=-\frac{1}{4}[/tex]

We solve the equation for r:

[tex]\begin{gathered} -8r^5=-\frac{1}{4} \\ \text{Divide both sides by -8} \\ \frac{-8r^5}{-8}=-\frac{1}{4\times-8} \\ r^5=\frac{1}{32} \end{gathered}[/tex]

Next, take the 5th root of both sides:

[tex]\begin{gathered} \sqrt[5]{r^5}=\sqrt[5]{\frac{1}{32}} \\ r=\frac{1}{2} \end{gathered}[/tex]

The common ratio of the geometric progression is 1/2.