Applying the Pythagorean theorem, with a = 6 and b = 7 (the legs of the right triangle formed), the length of the hypotenuse c is:
[tex]\begin{gathered} c^2=a^2+b^2 \\ c^2=6^2+7^2 \\ c^2=36+49 \\ c^2=85 \\ c=\sqrt[]{85} \end{gathered}[/tex]By definition:
[tex]\sin (angle)=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]In this case, the angle is θ, the hypotenuse is c and the opposite side is 7 units long. Substituting this information into the equation, we get:
[tex]\sin \theta=\frac{7}{\sqrt[]{85}}[/tex]