4(5 + 8x + 1) = 100(a) Find the exact solution of the exponential equation in terms of logarithms.x = (b) Use a calculator to find an approximation to the solution rounded to six decimal places.x =

Respuesta :

The given equation is

[tex]4(5+8^{x+1})=100[/tex]

Divide both sides by 4

[tex]\begin{gathered} \frac{4(5+8^{x+1})}{4}=\frac{100}{4} \\ \\ 5+8^{x+1}=25 \end{gathered}[/tex]

Subtract 5 from each side

[tex]\begin{gathered} 5-5+8^{x+1}=25-5 \\ \\ 8^{x+1}=20 \end{gathered}[/tex]

Insert log on both sides

[tex]log(8^{x+1})=log20[/tex]

Use the rule of the power

[tex](x+1)log(8)=log(20)[/tex]

Divide both sides by log(8)

[tex]\begin{gathered} \frac{(x+1)log(8)}{log(8)}=\frac{log(20)}{log(8)} \\ \\ x+1=\frac{log(20)}{log(8)} \end{gathered}[/tex]

Subtract 1 from both sides

[tex]\begin{gathered} x+1-1=\frac{log(20)}{log(8)}-1 \\ \\ x=\frac{log(20)}{log(8)}-1 \end{gathered}[/tex]

a)

The exact solution is

[tex]x=\frac{log(20)}{log(8)}-1[/tex]

b)

By using the calculator the solution is

[tex]x=0.440643[/tex]

The answer is x = 0.440643 to the nearest 6 decimal place