Respuesta :

Given

The derivative function is given as

[tex]f^{\prime}^{\prime}(x)=x+2[/tex]

and f(0) = - 1 and f'(0) = 3

Explanation

To determine the function,

[tex]\begin{gathered} \int d^2y=\int(x+2)dx^2 \\ \frac{dy}{dx}=\frac{x}{2}^2+2x+C \\ f^{\prime}(0)=\frac{0}{2}^2+2(0)+C \\ 3=C \end{gathered}[/tex]

It is also given that f(0) = - 1.

[tex]f^{\prime}(x)=\frac{x^2}{2}+2x+3[/tex]

Take the integral and find the function

[tex]\begin{gathered} \int dy=\int\frac{x^2}{2}+2x+3dx \\ y=\frac{x^3}{6}+\frac{2x^2}{2}+3x+C \\ y=\frac{x^3}{6}+x^2+3x+C \\ f(x)=\frac{x^3}{6}+x^2+3x+C \\ -1=0+C \\ C=-1 \end{gathered}[/tex]

Then the function is determined as

[tex]y=\frac{x^3}{6}+x^2+3x-1[/tex]

Answer

Hence the function is determined as

[tex]f(x)=\frac{x^3}{6}+x^2+3x-1[/tex]