Step 1 of 2:
[tex]\frac{y^2+6y}{6y}[/tex][tex]\begin{gathered} y^2+6y\text{ = y(y + 6)} \\ \frac{y^2+6y}{6y}=\frac{y(y+6)}{6y} \end{gathered}[/tex][tex]\begin{gathered} y\text{ is common to numerator and denominator. It will cancel out} \\ \frac{y(y+6)}{y(6)}=\frac{y+6}{6} \end{gathered}[/tex][tex]\text{The lowest term = }\frac{y+6}{6}[/tex]step 2 of 2:
[tex]\begin{gathered} The\text{ denominator = 6y} \\ Rational\text{ }expressions\text{ are not equal to zero in the denominator} \end{gathered}[/tex]So equating the denominator to zero will give the restricted values of y
[tex]\begin{gathered} \text{equating the denominator to zero} \\ 6y\text{ = 0} \\ y\text{ = 0/6} \\ y\text{ = 0} \\ \end{gathered}[/tex]This means y cannot be equal to zero
The restricted value of y = 0