Step 1 of 2: Reduce the rational expression to its lowest terms. y^2 + 6y/6yStep 2 of 2: Find the restricted values of Y, if any, for the given rational expression. y^2 + 6y/6y

Step 1 of 2 Reduce the rational expression to its lowest terms y2 6y6yStep 2 of 2 Find the restricted values of Y if any for the given rational expression y2 6y class=

Respuesta :

[tex]\begin{gathered} 1)\text{ }\frac{y+6}{6} \\ 2)\text{ y }\ne0 \end{gathered}[/tex]Explanation:

Step 1 of 2:

[tex]\frac{y^2+6y}{6y}[/tex][tex]\begin{gathered} y^2+6y\text{ = y(y + 6)} \\ \frac{y^2+6y}{6y}=\frac{y(y+6)}{6y} \end{gathered}[/tex][tex]\begin{gathered} y\text{ is common to numerator and denominator. It will cancel out} \\ \frac{y(y+6)}{y(6)}=\frac{y+6}{6} \end{gathered}[/tex][tex]\text{The lowest term = }\frac{y+6}{6}[/tex]

step 2 of 2:

[tex]\begin{gathered} The\text{ denominator = 6y} \\ Rational\text{ }expressions\text{ are not equal to zero in the denominator} \end{gathered}[/tex]

So equating the denominator to zero will give the restricted values of y

[tex]\begin{gathered} \text{equating the denominator to zero} \\ 6y\text{ = 0} \\ y\text{ = 0/6} \\ y\text{ = 0} \\ \end{gathered}[/tex]

This means y cannot be equal to zero

The restricted value of y = 0