First, determine the constant of proportion for each ordered pair.
Let y be the number of raisins
x be the number of cups of cereal
Solve for the constant of proportion k
[tex]\begin{gathered} y=kx \\ \\ \text{Using \lparen3,360\rparen} \\ y=kx \\ 360=k(3) \\ 360=3k \\ \frac{360}{3}=\frac{3k}{3} \\ k=120 \\ \\ \text{Using \lparen5,600\rparen} \\ y=kx \\ 600=k(5) \\ 600=5k \\ \frac{600}{5}=\frac{5k}{5} \\ k=120 \end{gathered}[/tex]The constant of proportion is k = 120. Use this information to determine the number of raising for x = 9 and x = 16.
[tex]\begin{gathered} \text{If }x=9,\text{ then} \\ y=kx \\ y=(120)(9) \\ y=1080 \\ \; \\ \text{If }x=16,\text{ then} \\ y=kx \\ y=(120)(16) \\ y=1920 \end{gathered}[/tex]Therefore, we have the following ordered pair in the table (9,1080) and (16,1920).