From the problem, we have :
[tex]\begin{gathered} 3x+3y=3 \\ y=-\frac{1}{2}x+2 \end{gathered}[/tex]Find the x and y intercepts of the lines to graph the following equations.
For 3x + 3y = 3
x-intercept :
[tex]\begin{gathered} 3x+\cancel{3y}=3 \\ x=\frac{3}{3}=1 \end{gathered}[/tex]y-intercept :
[tex]\begin{gathered} \cancel{3x}+3y=3 \\ y=\frac{3}{3}=1 \end{gathered}[/tex]The points are (1, 0) and (0, 1)
For y = -1/2 x + 2
y-intercept :
[tex]\begin{gathered} y=\cancel{-\frac{1}{2}x}+2 \\ y=2 \end{gathered}[/tex]x-intercept :
[tex]\begin{gathered} \cancel{y}=-\frac{1}{2}x+2 \\ \frac{1}{2}x=2 \\ x=4 \end{gathered}[/tex]The points are (0, 2) and (4, 0)
Plot the points :
The solution is the intersection between two lines.
The intersection is at (-2, 3)
The y coordinate is 3
The answer is B. y = 3