We need to find the LCM to determine the smallest to the greatest:
[tex]\begin{gathered} \text{All thr}e\text{ numbers have whole numbers as 3} \\ So\text{ we will find the LCM of the fraction:} \\ \frac{39}{40},\text{ }\frac{19}{20},\text{ }\frac{1}{2} \\ =\frac{1(39),\text{ 2(19), 20(1)}}{40} \end{gathered}[/tex][tex]\begin{gathered} =\frac{39,\text{ 38, 20}}{40} \\ \text{The numbers: }\frac{39}{40},\text{ }\frac{38}{40},\frac{20}{40} \\ \text{SInce they have same base, we consider the numerator:} \\ \text{The highest is 39, followed by 38 and the least is 20} \end{gathered}[/tex][tex]\begin{gathered} \text{least: 20/40 represents 1/2} \\ \frac{38}{40\text{ }}represents\text{ 19/20} \\ \text{highest: 39/40 represents 39/40} \end{gathered}[/tex][tex]\begin{gathered} \text{Arrangement from least to greatest:} \\ 3\frac{1}{2},\text{ 3}\frac{19}{20}\text{ and 3}\frac{39}{40} \end{gathered}[/tex]