We have the following equation to solve
[tex]E=I\cdot Z[/tex]Where E, I, and Z are complex numbers, therefore let's put it in numbers
[tex]E=(4+4i)(7+3i)[/tex]We can solve it directly into the rectangular form by doing the distrutive
Then
[tex](4+4i)(7+3i)=28+12i+28i+12i^2[/tex]Remember that
[tex]i^2=-1[/tex]Then
[tex]\begin{gathered} (4+4\imaginaryI)(7+3\imaginaryI)=28+12i+28i-12 \\ \\ (4+4\imaginaryI)(7+3\imaginaryI)=16+40i \end{gathered}[/tex]Now we have completely solved the problem!
[tex]E=16+40i[/tex]______________________
The second solution (usual)
When we have real engineering problems, we like to do multiplication and division with the polar form, then let's convert Z and I to the polar form
[tex]\begin{gathered} I=4+4i=4\sqrt{2}\angle45° \\ \\ Z=7+3i=\sqrt{58}\angle23.2° \end{gathered}[/tex]Now to do the multiplication we multiple the magnitude and sum the phases (angles)
[tex]\begin{gathered} ZI=4\sqrt{2}\cdot\sqrt{58}\angle45°+23.2° \\ \\ ZI=4\sqrt{116}\operatorname{\angle}68.2° \end{gathered}[/tex]We already have the result, now just put it in the rectangular form
[tex]\begin{gathered} ZI=4\sqrt{116}\cdot\cos(68.2)+i4\sqrt{116}\sin(68.2) \\ \\ E=16+40i \end{gathered}[/tex]