Let;
A(-8,6) B(6,6) C(6, -4) D(-8, -4)
Let's find the length AB
x₁= -8 y₁=6 x₂=6 y₂=6
We will use the distance formula;
[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex][tex]=\sqrt[]{(6+8)^2+(6-6)^2}[/tex][tex]=\sqrt[]{14^2+0}[/tex][tex]=14[/tex]Next, we will find the width BC
B(6,6) C(6, -4)
x₁= 6 y₁=6 x₂=6 y₂=-4
substitute into the distance formula;
[tex]d=\sqrt[]{(6-6)^2+(-4-6)^2}[/tex][tex]=\sqrt[]{(-10)^2}[/tex][tex]=\sqrt[]{100}[/tex][tex]=10[/tex]Area = l x w
= 14 x 10
= 140 square units