The question requires that we evaluate the value of:
[tex](g\cdot f)(-2)[/tex]Recall that:
[tex]\left(g\cdot \:f\right)\left(x\right)=g\left(x\right)\cdot \:f\left(x\right)[/tex]Therefore, we have that:
[tex]\left(g\cdot\:f\right)\left(-2\right)=g\left(-2\right)\cdot\:f\left(-2\right)[/tex]We can get the values of g(-2) and f(-2) from the graph as shown below:
Therefore, we have:
[tex]\begin{gathered} g(-2)=5 \\ f(-2)=1 \end{gathered}[/tex]Hence, we can calculate the composite function to be:
[tex]\begin{gathered} (g\cdot f)(-2)=5\times1 \\ (g\cdot f)(-2)=5 \end{gathered}[/tex]