Respuesta :

From the question;

The Area formula for a trapezoid is;

[tex]\begin{gathered} B=\frac{1}{2}h(b_1+b_2) \\ Where\text{ B=Area} \\ h=\text{height of the trapezoid} \\ b_1,b_2=bases_{} \end{gathered}[/tex][tex]\begin{gathered} B=\frac{1}{2}(3)(4+8) \\ B=18\operatorname{cm} \end{gathered}[/tex]

So, we have the surface area as;

[tex]\begin{gathered} SA=ph+2B \\ \text{Where SA= surface area} \\ p=\text{perimeter of the trapezoid} \\ h=\text{height of the prism} \end{gathered}[/tex]

But the perimeter p of the trapezoid is;

[tex]\begin{gathered} p=3.7\operatorname{cm}+4\operatorname{cm}+8\operatorname{cm}+3.7\operatorname{cm} \\ p=19.4\operatorname{cm} \end{gathered}[/tex]

Thus, we have;

[tex]\begin{gathered} SA=19.4(9)+2(18) \\ SA=174.6+36 \\ SA=210.6\operatorname{cm} \end{gathered}[/tex]