Respuesta :

For finding the roots of the function, we have to writte the equation in this form:

[tex]ax^2+bx+c=0[/tex]

So in our problem will be:

[tex]x^2+(-4)x-5=0[/tex]

Now we can use the cuadratic equation that is:

[tex]\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

and in our problem will be:

[tex]\begin{gathered} \frac{4\pm\sqrt[]{16^{}-4(1)(-5)}}{2(1)} \\ \frac{4\pm\sqrt[]{16^{}+20}}{2} \\ \frac{4\pm\sqrt[]{36}}{2} \\ \frac{4\pm6}{2} \end{gathered}[/tex]

Now we can find our two solutions or roots, one with the + and the other with the -

1)

[tex]\begin{gathered} x=\frac{4+6}{2} \\ x=\frac{10}{2} \\ x=5 \end{gathered}[/tex]

2)

[tex]\begin{gathered} x=\frac{4-6}{2} \\ x=\frac{-2}{2} \\ x=-1 \end{gathered}[/tex]

so the roots are going to be: -1, 5