Find the coordinates of the vertices of the figure after the given transformation: T<2,4> translation 3A. J′(1,−1),E′(1,1),V′(4,3)B. J′(0,−2),E′(0,0),V′(3,2)C. J′(−2,−1),E′(−2,1),V′(1,3)D. J′(−3,−2),E′(−3,0),V′(0,2)

Find the coordinates of the vertices of the figure after the given transformation Tlt24gt translation 3A J11E11V43B J02E00V32C J21E21V13D J32E30V02 class=

Respuesta :

According to the given rule of transformation, any point (x,y) is transformed as follows:

[tex](x,y)\rightarrow(x+2,y+4).[/tex]

Now, the coordinates of the vertices of the triangle are:

[tex]V(-1,-1),J(-4,-5),E(-4,-3).[/tex]

Therefore:

[tex]\begin{gathered} V^{\prime}(-1+2,-1+4), \\ J^{\prime}(-4+2,-5+4), \\ E^{\prime}(-4+2,-3+4). \end{gathered}[/tex]

Simplifying the above result, you get:

[tex]J^{\prime}(-2,-1),E^{\prime}\left(−2,1\right),V^{\prime}\left(1,3\right).[/tex]

Answer:

[tex]J^{\prime}(-2,-1),E^{\prime}(-2,1),V^{\prime}(1,3).[/tex]