We have a right triangle and we have to write some of the trigonometric ratios.
A trigonometric ratio relates a trigonometric function of an angle of the tiangle with a quotient of two of the sides of the triangle.
The basic trigonometric ratios are:
[tex]\begin{gathered} \sin (\alpha)=\frac{\text{Opposite}}{\text{Hypotenuse}} \\ \cos (\alpha)=\frac{\text{Adyacent}}{\text{Hypotenuse}} \end{gathered}[/tex]We can also write the trigonometric ratio for the tangent:
[tex]\tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)}=\frac{\text{Opposite}}{\text{Adyacent}}[/tex]Now, we can write sin(x):
[tex]\sin (X)=\frac{\text{Opposite}}{\text{Adyacent}}=\frac{YZ}{XZ}=\frac{12}{15}[/tex]The opposite side to X is YZ and the hypotenuse is XZ, so sin(X) = YZ/XZ = 12/15.
In the same way, we can calculate cos(x):
[tex]\cos (X)=\frac{\text{Adyacent}}{\text{Hypotenuse}}=\frac{XY}{XZ}=\frac{9}{15}[/tex]The tan(x) can be calculated as:
[tex]\tan (X)=\frac{\text{Opposite}}{\text{Adyacent}}=\frac{YZ}{XY}=\frac{12}{9}[/tex]For Z, the opposite and adyacent angles are different than for X, so we can write:
[tex]\tan (Z)=\frac{\text{Opposite}}{\text{Adyacent}}=\frac{XY}{YZ}=\frac{9}{12}[/tex]Answer:
sin(X) = 12/15
cos(X) = 9/15
tan(X) = 12/9
tan(Z) = 9/12