Respuesta :

Using the law of sines:

[tex]\begin{gathered} \frac{o}{\sin(O)}=\frac{m}{\sin (M)} \\ \frac{790}{\sin(50)}=\frac{m}{\sin (25)} \\ m=\frac{790\cdot\sin (25)}{\sin (50)} \\ m=435.834278 \end{gathered}[/tex][tex]\begin{gathered} \frac{o}{\sin(O)}=\frac{n}{\sin (N)} \\ \frac{790}{\sin(50)}=\frac{n}{\sin (105)} \\ n=\frac{790\cdot\sin (105)}{\sin (50)} \\ n=515.6358793 \end{gathered}[/tex]

Using the heron formula:

[tex]\begin{gathered} s=\frac{790+435.834278+515.6358793}{2} \\ s=870.7350787 \\ so\colon \\ A=\sqrt[]{870.7350787(870.7350787-790)(870.7350787-435.834278)(870.7350787-515.6358793)} \\ \end{gathered}[/tex][tex]\begin{gathered} A=104194.335 \\ A=104194cm^2 \end{gathered}[/tex]

Ver imagen KritikaF23549