5. Determine the value of each variable for parallelogram INDY that has diagonals that intersect at P.IP = 3x, DP = 6x-2, NP = 3y, and YP = 7x - 2.

Respuesta :

Given the INDY

The diagonals has intersected at the point P

IP = 3x, DP = 6x - 2

NP = 3y , YP = 7x - 2

So, IP = DP

[tex]6x-2=3x[/tex]

Solve for x :

[tex]\begin{gathered} 6x-2=3x \\ 6x-3x=2 \\ 3x=2 \\ \\ x=\frac{2}{3} \end{gathered}[/tex]

And : NP = YP

[tex]3y=7x-2[/tex]

substitute with the value of x :

[tex]\begin{gathered} 3y=7\cdot\frac{2}{3}-2=\frac{23}{3}-2=\frac{17}{3} \\ \\ y=\frac{17}{9} \end{gathered}[/tex]

So, the answer is :

[tex]\begin{gathered} x=\frac{2}{3} \\ \\ y=\frac{17}{9} \end{gathered}[/tex]