Given the INDY
The diagonals has intersected at the point P
IP = 3x, DP = 6x - 2
NP = 3y , YP = 7x - 2
So, IP = DP
[tex]6x-2=3x[/tex]Solve for x :
[tex]\begin{gathered} 6x-2=3x \\ 6x-3x=2 \\ 3x=2 \\ \\ x=\frac{2}{3} \end{gathered}[/tex]And : NP = YP
[tex]3y=7x-2[/tex]substitute with the value of x :
[tex]\begin{gathered} 3y=7\cdot\frac{2}{3}-2=\frac{23}{3}-2=\frac{17}{3} \\ \\ y=\frac{17}{9} \end{gathered}[/tex]So, the answer is :
[tex]\begin{gathered} x=\frac{2}{3} \\ \\ y=\frac{17}{9} \end{gathered}[/tex]