Answer: Intenisy = 83.2 milliroentgens per hour
Let the intensity from the radiation = I
Let the distance = d
The intensity is inversely proportional to the square of its distance
[tex]\begin{gathered} I\text{ }\propto\text{ }\frac{1}{d^2} \\ \text{Introducing a proportionality constant} \\ I\text{ = }\frac{k\text{ x 1}}{d^2} \\ I\text{ = }\frac{k}{d^2} \\ \text{When I = 62.5 , d = 3} \\ \text{From the above equation} \\ K=I\cdot d^2 \\ K\text{ = 62.5 }\cdot(3)^2 \\ K\text{ = 62.5 x 9} \\ K\text{ = 562.5 } \\ \text{ Find the intensity wen D = 2.6 meters} \\ I\text{ = }\frac{k}{d^2} \\ I\text{ = }\frac{562.5}{(2.6)^2} \\ I\text{ = }\frac{562.5}{6.76} \\ I\text{ = 83. 2 milliroentgens per our} \end{gathered}[/tex]