Respuesta :

Answer:

3,360 ways.

Explanation:

In the word PARALLEL

• Number of letters = 8

,

• Number of Ls = 3

,

• Number of As = 2

Since no other restriction is given, the number of ways in which the letters can be arranged is:

[tex]\frac{8!}{3!\times2!}[/tex]

We solve to obtain our result.

[tex]\begin{gathered} \frac{8!}{3!\times2!}=\frac{8\times7\times6\times5\times4\times3!}{3!\times2!} \\ =\frac{8\times7\times6\times5\times4}{2!} \\ =8\times7\times6\times5\times2 \\ =3360\text{ ways} \end{gathered}[/tex]

The word can be arranged in 3,360 ways.