We need to calculate the following quotient:
[tex]\frac{8n^6-16n^4}{4n^3}[/tex]We know that:
[tex]\begin{gathered} 8n^6=4n^3\cdot2n^3 \\ 16n^4=4n^3\cdot4n \end{gathered}[/tex]Then:
[tex]\frac{8n^6-16n^4}{4n^3}=\frac{4n^3\cdot2n^3-4n^3\cdot4n}{4n^3}[/tex]Using the distributive property of multiplication, we factor the 4n³ term of the numerator:
[tex]\begin{gathered} \Rightarrow\frac{4n^3\cdot2n^3-4n^3\cdot4n}{4n^3}=\frac{4n^3(2n^3-4n)}{4n^3} \\ \therefore\frac{8n^6-16n^4}{4n^3}=2n^3-4n \end{gathered}[/tex]