Sine formula
[tex]\sin (angle)=\frac{\text{opposite side}}{hypotenuse}[/tex]Considering angle C from triangle BCD, the opposite side is side BD and the hypotenuse is side BC which length is a units. Then:
[tex]\begin{gathered} \sin (\angle C)=\frac{BD}{a} \\ \text{ Isolating BD} \\ \sin (\angle C)\cdot a=BD \end{gathered}[/tex]The area of a triangle is calculated as follows:
[tex]A=\frac{1}{2}\cdot\text{base}\cdot\text{height}[/tex]In triangle ABC the base is b units long and its height is segment BD, then the area of triangle ABC is:
[tex]\begin{gathered} A=\frac{1}{2}\cdot b\cdot BD \\ \text{ Substituting with the previous result:} \\ A=\frac{1}{2}\cdot b\cdot a\cdot\sin (\angle C) \end{gathered}[/tex]