Let's begin by identifying key information given to us:
4 magazines have 118 pages
4 magazines have 152 pages
2 magazines have 169 pages
The expected value for X (in pages) is given by:
[tex]\begin{gathered} P(118pages)=\frac{4}{10}=\frac{2}{5} \\ P(152pages)=\frac{4}{10}=\frac{2}{5} \\ P(169pages)=\frac{2}{10}=\frac{1}{5} \\ EV(x)=118\times\frac{2}{5}+152\times\frac{2}{5}+169\times\frac{1}{5} \\ EV(x)=141\frac{4}{5}=141.80 \\ EV(x)=141.8 \end{gathered}[/tex]The expected value of X is 141.8 pages