Answer:
f(x)=(6x+6)(x+10)
Explanation:
Given the quadratic expression:
[tex]f\mleft(x\mright)=6x^2+66x+60[/tex]First, we can rewrite it in the form below:
[tex]f\mleft(x\mright)=6x^2+60x+6x+60[/tex]Next, factor the terms:
[tex]\begin{gathered} f(x)=6x(x+10)+6(x+10) \\ \implies f(x)=(6x+6)(x+10) \end{gathered}[/tex]Thus, the quadratics as a product of two binomials is:
[tex]f(x)=(6x+6)(x+10)[/tex]