Given:
[tex]\begin{gathered} P\left(A\right)=0.35 \\ P\left(B\right)=0.40 \\ P\left(A\text{ }and\text{ }B\right)=0.13 \end{gathered}[/tex]To find:
[tex]P(A\text{ or }B)[/tex]Explanation:
Using the formula,
[tex]\begin{gathered} P(A\text{ or}B)=P(A)+P(B)-P(A\text{ and }B) \\ =0.35+0.40-0.13 \\ =0.62 \end{gathered}[/tex]Therefore, the value is,
[tex]P(A\text{ or }B)=0.62[/tex]Final answer:
The value is,
[tex]P(A\text{ or }B)=0.62[/tex]