Solution
Given that a square window has an area of x² + 12x + 36
[tex]\begin{gathered} Area\text{ of square = l}^2 \\ Where\text{ l = length of the square} \\ Thus,\text{ length of the square= }\sqrt{Area}\text{ of the square} \end{gathered}[/tex][tex]\begin{gathered} l=\sqrt{x²+12x+36} \\ l=\sqrt{(x^2+6x+6x+36}) \\ l=\sqrt{x(x+6)+6(x+6)} \\ l=\sqrt{(x+6)(x+6)} \\ l=\sqrt{(x+6)^2} \\ l=x+6 \end{gathered}[/tex]The length of one side of the square = x+6