Respuesta :

Given: The system of equation below

[tex]\begin{gathered} 2x+8y=16 \\ -3x+6y=30 \end{gathered}[/tex]

To Determine: The number of solutions

Solution

Combine the two equations and solve

[tex]\begin{gathered} equation1:2x+8y=16 \\ equation2:-3x+6y=30 \end{gathered}[/tex]

Multiply equation by 3 and equation 2 by 2

[tex]\begin{gathered} 3(2x+8y=16)=6x+24y=48==equation3 \\ 2(-3x+6y=30)=-6x+12y=60==equation4 \end{gathered}[/tex]

Add equation 3 and 4

[tex]\begin{gathered} 6x-6x+24y+12y=48+60 \\ 36y=108 \\ y=\frac{108}{36} \\ y=3 \end{gathered}[/tex]

Substitute y in equation 1

[tex]\begin{gathered} 2x+8y=16 \\ 2x+8(3)=16 \\ 2x+24=16 \\ 2x=16-24 \\ 2x=-8 \\ x=-\frac{8}{2} \\ x=-4 \end{gathered}[/tex]

Hence, x = -4, y = 3