Respuesta :

Given

Series,

[tex]27,9,3,1,\frac{1}{3},\frac{1}{9},...[/tex]

Find

Write the sigma notation for the infinite series.

Explanation

as we see the given series is a geometric series .

here , a = 27

common ratio , r = 9/27 = 1/3

so ,

[tex]\begin{gathered} \sum_{n\mathop{=}1}^{\infty}ar^{n-1} \\ \\ \sum_{n\mathop{=}1}^{\infty}(27)(\frac{1}{3})^{n-1} \\ \\ \sum_{n\mathop{=}1}^{\infty}(\frac{1}{3})^{-3}(\frac{1}{3})^{n-1} \\ \\ \sum_{n\mathop{=}1}^{\infty}(\frac{1}{3})^{n-4} \end{gathered}[/tex]

Final Answer

Hence , the sigma notation for the infinite series is

[tex]\sum_{n\mathop{=}1}^{\infty}(\frac{1}{3})^{n-4}[/tex]