Respuesta :

Answer:

(a)10

(b)-11

Explanation:

Given the function p(x) and q(x) defined as follows:

[tex]\begin{gathered} p(x)=-2x-1 \\ q(x)=x^2+1 \end{gathered}[/tex]

Part A

[tex]\begin{gathered} (q\circ p)(x)=q(p(x)) \\ =(-2x-1)^2+1 \\ (q\circ p)(-2)=(-2(-2)-1)^2+1 \\ =(4-1)^2+1 \\ =3^2+1 \\ (q\circ p)(-2)=10 \end{gathered}[/tex]

Part B

[tex]\begin{gathered} (p\circ q)(x)=p(q(x)) \\ =-2(x^2+1)-1 \\ (p\circ q)(-2)=-2((-2)^2+1)-1 \\ =-2(4+1)-1 \\ =-2(5)-1=-10-1 \\ (p\circ q)(-2)=-11 \end{gathered}[/tex]