Answer:
(a)10
(b)-11
Explanation:
Given the function p(x) and q(x) defined as follows:
[tex]\begin{gathered} p(x)=-2x-1 \\ q(x)=x^2+1 \end{gathered}[/tex]Part A
[tex]\begin{gathered} (q\circ p)(x)=q(p(x)) \\ =(-2x-1)^2+1 \\ (q\circ p)(-2)=(-2(-2)-1)^2+1 \\ =(4-1)^2+1 \\ =3^2+1 \\ (q\circ p)(-2)=10 \end{gathered}[/tex]Part B
[tex]\begin{gathered} (p\circ q)(x)=p(q(x)) \\ =-2(x^2+1)-1 \\ (p\circ q)(-2)=-2((-2)^2+1)-1 \\ =-2(4+1)-1 \\ =-2(5)-1=-10-1 \\ (p\circ q)(-2)=-11 \end{gathered}[/tex]