Assume that C₂H₂F₄ vapor is an ideal gas and use the ideal gas law to find the volume of the vapor.
First, use the molecular mass of the compound to find the number of moles present in 0.110g of the compound.
[tex]0.110g\cdot\frac{1mol}{102.03g}=0.00108mol[/tex]Convert the temperature in celsius to kelvin:
[tex]K=34+273.15=307.15[/tex]Use the ideal gas law and solve it for V:
[tex]\begin{gathered} P\cdot V=n\cdot R\cdot T \\ V=\frac{n\cdot R\cdot T}{P} \end{gathered}[/tex]Replace for the known values (R, the ideal gas constant is 0.082 atmL/molK):
[tex]\begin{gathered} V=\frac{0.00108mol\cdot0.082\frac{atmL}{molK}\cdot307.15K}{0.887atm} \\ V=0.0306L \end{gathered}[/tex]The volume of the vapor is 0.0306L.