Respuesta :

To find the explicit formula of a geometric sequence you use the next:

[tex]a_n=a_1\cdot r^{n-1}[/tex]

a1 is the first term in the sequence

r is the ratio between each pair of terms

2,8,32,128,...

Find r:

[tex]\begin{gathered} \frac{8}{2}=4 \\ \\ \frac{32}{8}=4 \\ \\ \frac{128}{32}=4 \end{gathered}[/tex]

Find the explicit formula:

[tex]a_n=2\cdot4^{n-1}[/tex]

To find the 10th term you substitute the n in the formula for 10:

[tex]\begin{gathered} a_{10}=2\cdot4^{10-1} \\ \\ a_{10}=2\cdot4^9_{}_{} \\ \\ a_{10}=2\cdot262144 \\ \\ a_{10}=524288 \end{gathered}[/tex]Then, the 10th term is 524,288