Respuesta :

ANSWER

[tex]11.04\text{ or }\frac{-2+\sqrt{580}}{2}[/tex]

EXPLANATION

Given that:

In the figure provided, the triangle EFG is similar to the triangle is ECD

FE = 12

CD = 12

FG = CF + 2

To find the length CF, apply the similarity triangle theorem

[tex]\frac{\text{ FE}}{\text{ CF}}\text{ }=\frac{\text{ FG}}{CD}[/tex]

Substitute the given data into the above equation

[tex]\begin{gathered} \text{ }\frac{12}{CF}=\frac{CF+2}{12} \\ \text{ cross multiply} \\ \text{ 12}\times12\text{ }=\text{ CF\lparen CF + 2\rparen} \\ \text{ 144 }=\text{ CF}^2\text{ }+\text{ 2CF} \\ CF^2\text{ }+\text{ 2CF -144 =0} \\ \text{ Find CF using the general formula} \\ x\text{ }=\text{ }\frac{-b\pm\sqrt{b^2-\text{ 4ac}}}{\placeholder{⬚}} \\ \text{ a }=1,\text{ b}=2,\text{ c}=-144 \\ \text{ x }=\frac{-2\text{ }\pm\sqrt{2^2-4\times1\times(-144)}}{2} \\ \text{ x}=\text{ }\frac{-2\pm\sqrt{4+576}}{2} \\ \text{ x }=\text{ }\frac{-2\pm\sqrt{580}}{2} \\ \text{ x }=\text{ }\frac{-2+\sqrt{580}}{2} \\ \text{ x }=\text{ }\frac{-2+24.083}{2} \\ \text{ x }=\frac{22.083}{2} \\ \text{ x }=11.04 \\ \text{ Therefore, CF is 11.04 or }\frac{-2+\sqrt{580}}{2} \end{gathered}[/tex]