Given
To find:
a) The length of the side opposite
(b) The length of the side adjacent to
(c) cos()
(d) sin()
(e) tan()
Explanation:
It is given that,
That implies,
(a) The length of the side opposite is 3.00.
(b) The length of the side adjacent to is 3.00.
(c) cos()
[tex]\begin{gathered} \cos(\theta)=\frac{adjacen\text{t }side}{hypotenuse} \\ =\frac{4.00}{5.00} \\ =\frac{4}{5} \\ =0.8 \end{gathered}[/tex](d) sin()
[tex]\begin{gathered} \sin(\varphi)=\frac{opposite\text{ }side}{hypotenuse} \\ =\frac{4.00}{5.00} \\ =\frac{4}{5} \\ =0.8 \end{gathered}[/tex](e) tan()
[tex]\begin{gathered} \tan(\varphi)=\frac{opposite\text{ }side}{adjacent\text{ }side} \\ =\frac{4.00}{3.00} \\ =\frac{4}{3} \\ =1.33 \end{gathered}[/tex]