The capacitance of a capacitor of a parallel plate is given by:
[tex]C=\frac{kA\cdot\epsilon_o}{d}[/tex]Where:
[tex]\begin{gathered} \epsilon_o=_{\text{ }}Vacuum_{\text{ }}permittivity \\ k=_{\text{ }}Dielectric_{\text{ }}constant=2 \\ A=_{\text{ }}Area_{\text{ }}of_{\text{ }}the_{\text{ }}plates \\ d=_{\text{ }}distance_{\text{ }}betwen_{\text{ }}the_{\text{ }}plates \end{gathered}[/tex]We also know:
[tex]\begin{gathered} Q=\frac{q}{V} \\ so\colon \\ \frac{q}{V}=\frac{kA\cdot\epsilon_o}{d} \\ V=\frac{qd}{kA\cdot\epsilon_o} \\ if \\ k=2 \\ V=\frac{1}{2}(\frac{qd}{kA\cdot\epsilon_o}) \end{gathered}[/tex]As we can see the voltage halves
And since:
[tex]\begin{gathered} E=\frac{V}{d} \\ W=qV \end{gathered}[/tex]We can conclude that electric field and also the energy halve