To calculate the ratio or the unit rate, we have to divide each ratio:
[tex]\frac{4\text{ miles}}{3+\frac{1}{3}\text{ hours}}=\frac{4}{\frac{10}{3}}\frac{\text{ miles}}{\text{ hour}}=4\cdot\frac{3}{10}=\frac{12}{10}=1.2\frac{\text{ miles}}{\text{ hour}}[/tex][tex]\frac{\frac{1}{3}}{2+\frac{3}{8}}=\frac{\frac{1}{3}}{\frac{16+3}{8}}=\frac{\frac{1}{3}}{\frac{19}{8}}=\frac{1}{3}\cdot\frac{8}{19}=\frac{8}{57}\approx0.14\frac{\text{ miles}}{\text{ hour}}[/tex][tex]\frac{2+\frac{1}{2}}{3}=\frac{\frac{5}{2}}{3}=\frac{5}{2}\cdot\frac{1}{3}=\frac{5}{6}\approx0.83\frac{\text{ miles}}{\text{ hour}}[/tex][tex]\frac{7}{\frac{3}{4}}=7\cdot\frac{4}{3}=\frac{28}{3}\approx9.33\frac{\text{ miles}}{\text{ hour}}[/tex][tex]\frac{\frac{9}{5}}{3}=\frac{9}{5}\cdot\frac{1}{3}=\frac{3}{5}=0.6\frac{\text{ miles}}{\text{ hour}}[/tex][tex]\frac{\frac{9}{8}}{\frac{5}{6}}=\frac{9}{8}\cdot\frac{6}{5}=\frac{54}{40}=1.35\frac{\text{ miles}}{\text{ hour}}[/tex]Answer:
The ratios that are greater than 1 are:
4 miles : 3 1/3 hours
7 miles : 3/4 hour
9/8 miles : 5/6 hours