In order to find the linear equation, let's use the slope-intercept form below:
[tex]y=mx+b[/tex]Where m is the slope and b is the y-intercept.
Now, using the points (5, -10) and (-9, 10), we have:
[tex]\begin{gathered} y=mx+b \\ (5,-10)\colon \\ -10=5m+b \\ (-9,10)\colon \\ 10=-9m+b \end{gathered}[/tex]Subtracting one equation by the other, we have:
[tex]\begin{gathered} -10-(10)=5m+b-(-9m+b) \\ -10-10=5m+b+9m-b \\ -20=14m \\ m=-\frac{20}{14}=-\frac{10}{7} \\ \\ -10=5m+b \\ -10=-\frac{50}{7}+b \\ b=-10+\frac{50}{7} \\ b=-\frac{20}{7} \end{gathered}[/tex]So our linear equation is:
[tex]y=-\frac{10}{7}x-\frac{20}{7}[/tex]