Respuesta :

 2x2-19x=-24 Two solutions were found : x = 3/2 = 1.500
 x = 8

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                     2*x^2-19*x-(-24)=0 

Step by step solution Step  1  :Equation at the end of step  1  : (2x2 - 19x) - -24 = 0 Step  2  :Trying to factor by splitting the middle term

 2.1     Factoring  2x2-19x+24 

The first term is,  2x2  its coefficient is  2 .
The middle term is,  -19x  its coefficient is  -19 .
The last term, "the constant", is  +24 

Step-1 : Multiply the coefficient of the first term by the constant   2 • 24 = 48 

Step-2 : Find two factors of  48  whose sum equals the coefficient of the middle term, which is   -19 .

     -48   +   -1   =   -49     -24   +   -2   =   -26     -16   +   -3   =   -19   That's it Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -16  and  -3 
                     2x2 - 16x - 3x - 24

Step-4 : Add up the first 2 terms, pulling out like factors :
                    2x • (x-8)
              Add up the last 2 terms, pulling out common factors :
                    3 • (x-8)
Step-5 : Add up the four terms of step 4 :
                    (2x-3)  •  (x-8)
             Which is the desired factorizationEquation at the end of step  2  : (x - 8) • (2x - 3) = 0 Step  3 

AC Method
2
x^2 + 19x + 24
General formula:   ax^2 + bx + c
a=2, b=19, c=24

Step 1: Multiply a by c
2 * 24 = 48

Step 2: Find two numbers which multiply to make ac (in this case 48) and add to make b (in this case 19)
1 * 48 = 48, 1 + 48 does not equal 19
2 * 24 = 48, 2 + 24 does not equal 19
3 * 16 = 48, 3 + 16 equals 19

Step 3: Split bx into the two numbers from step 2
2x^2 + 19x + 24
=2x^2 + 16x + 3x +24
Step 4: Factorise the equation
2x^2 + 16x + 3x + 24
= [2x^2 + 16x] + [3x + 24] <----find the common factor
= 2x[x + 8]    +  3[x + 8]

Step 5: Gather the numbers together
2x[x + 8]    +  3[x + 8]
=(2x + 3)(x+8)

The answer is (2x + 3)(x + 8)

If question asks for solutions for x:

(2x + 3)(x + 8) = 0

2x + 3 = 0, x + 8 = 0

Therefore:

2x + 3 = 0        x + 8 = 0
2x = -3             x = -8
x = -3/2