In ΔABC, if the length of side b is 3 centimeters and the measures of ∠B and ∠C are 45° and 60°, respectively, what is the length of side c to two decimal places? 2.45 centimeters 3.67 centimeters 4.00 centimeters 5.45 centimeters

Respuesta :

answer is 3.67 centimeters

Answer:

[tex]c=3.67\ cm[/tex]

Step-by-step explanation:

we know that

Applying the law of sines

[tex]\frac{b}{sin(B)}=\frac{c}{sin(C)}[/tex]

in this problem we have

[tex]b=3\ cm, B=45\°, C=60\°[/tex]

substitute and solve for c

[tex]\frac{3}{sin(45\°)}=\frac{c}{sin(60\°)}[/tex]

[tex]c=sin(60\°)\frac{3}{sin(45\°)}[/tex]

[tex]c=3.67\ cm[/tex]