1. The width w of a rectangular swimming pool is x+4. The area A of the pool is 2x^3-29+12. what is an expression for the length of the pool?
a. 2x^2+8x+3
b. 2x^2-8x-3
c. 2x^2-8x+3
d. 2x^2+8-3

2. simplify x/6x-x^2
a. 1/6-x; where x = 0,6
b. 1/6-x; where x=6
c. 1/6; where x=0
d. 1/6

3. simplify -12x4/x4+8x^5
a. -12/1+8x; where x= -1/8
b. -12/1+8x; where x= -1/8,0

4. simplify x+5/ x^2+6x+5
a. 1/x+1; where x= -1
b. 1/x+1; where x=-1, -5

5. simplify x^2-3x-18/x+3
a. x-3
b. x-6; where x= -3
c. x-6; where x= 6
d. 1/x+3; where x= -3

6. simplify 2/3a . 2/a^2
a. 4/3a^2; where a=0
b. x-6; where a=0
c. 4/3a^3; where a=0
d. 4/3a^2

7. multiply x-5/4x+8 times (12x^2+32x+8)
a. (3x+2)/ 4(x-5)
b. (x-5) (3x+2)/ 4
c. (x-5) (3x+2)
d. (x-5) (12x+8)

8. divide. (x^2-16/x-1) / x+4
a. x-4/x-1
b. x+4/ x-1
c. (x+4) (x-3)/ x-1
d. x-4/x+1

9. divide. x^2+2x+1/x-2 / x^2-1/ x^2-4
a. (x+1) (x+2)/ x-1
b. (x-1) (x-2)/ x+1
c. (x+1) (x-2)/ x+1
d. (x-1) (x+2)/ x-1

10. divide (24w^10 + 8w^12) divide by (4x^4)
a. 6w^6+2x^8
b. 6w^6 + 8w^12
c. 24x^10+2w^8
d. 6w^10 + 2w^12

11. divide (-6m^9-6m^8-16m^6) divided by (2m^3)
a. -3m^9-3m^8-8m^6
b. -3m^6-6m^8-16m^3
c. -3m^6-3m^5-8m^3
d. -3m^6-3m^5-16m^3

12. simplify into one fraction -4x/x+7 - 8/x-7
a. -4x+8/x+7
b. x-8/ x
c. -4x-8/x+7
d. x+7/-4x

13. simplify into one fraction 3/x-3 - 5/x-2
a. -2x+9/ (x-3) (x-2)
b. -2x/ (x-3) (x-2)
c. 2x+9/ (x-3) (x-2)
d. 2x+9 / ( x-3) (x-2)

14. simplify into one fraction 9/x-1 - 5/ x+4
a. 4x+5/ (x-1) (x+4)
b. 4x+41/ (x-1) (x+4)
c. 4/ (x-1) (x+4)
d. 14/ (x-1) (x+4)

15. simplify into one fraction -3/x+2 - -5/x+3
a. -8x-19/ (x+2) (x+3)
b. -8/ (x+2) (x+3)
c. 2/ (x+2) (x+3)
d. 2x+1/ (x+2) (x+3)

16. solve 4/x + 5/x = -3
a. x=27
b. x=3
c. x=-3
d. x=-27

17. solve 1/3x-6 - 5/x-2 = 12
a. x= 34/9
b. x= -29/18
c. x= -34/9
d. x=29/18

18. what is the solution of the equation ? 1/x - 6/x^2 = -12
a. x=3/4 or x= -2/3
b. x= 3/4 or x=2/3
c. x= -3/4 or x= 2/3
d. x= -3/4 or x= -2/3

19. Dorothy and Rosanne are baking cookies for party, working alone Rosanne can finish the cookies in 6 hours, Dorothy can finished them in eight hours working alone. How long would it take for them to bake the cookies if they were working together ?
a. 7.00 hours
b. 3.43 hours
c. 0.29 hours
d. 14.00 hours

20 . The pressure, p , for gas varies inversely with it's volume, v ,. pressure is measured in units of pa. Suppose that a particular amount of gas as initially at a pressure of 104 pa at a volume of 108 L. If the volume is expanded to 432 L, what will the new pressure be ?
a. 26 pa
b. 27 pa
c. 416 pa
d. 1728 pa

21. do the data in that table represent a direct variation or an inverse variation?
x: 1,3,5,10
y: 4,12,20,40

a. direct variation y=4x
b. direct variation xy=1/4
c. inverse variation xy= 4
d. inverse variation xy=1/4

22. what are the excluded values of the function? y= 3/4x+64
a. x=0
b. x=-64
c. x=-16
d. x=-8


Respuesta :

Question 1

To find the width of the rectangle, we divide the area by the length
[tex]2x^{3}-29x+12 [/tex]÷[tex]x+4[/tex]
We use the method of long division to get the answer. The method is shown in the first diagram below

Answer: [tex]2x^{2}-8x+3[/tex]

Question 2:
[tex] \frac{x}{6x-x^{2} } = \frac{x}{x(6-x)} = \frac{1}{6-x} [/tex]

Question 3:
[tex] \frac{-12 x^{4} }{x^{4}+8 x^{5} }= \frac{-12 x^{4} }{ x^{4}(1+8x)}= \frac{-12}{1+8x} [/tex]

Question 4: 
[tex] \frac{x+5}{x^{2}+6x+5}= \frac{x+5}{(x+1)(x+5)}= \frac{1}{x+1} [/tex]


Question 5:
[tex] \frac{x^{2}-3x-18} {x+3}= \frac{(x-6)(x+3)}{x+3}= \frac{x-6}{1}=x-6 [/tex]

Question 6:
[tex] \frac{2}{3a} [/tex]×[tex] \frac{2}{a^{2}} [/tex]=[tex] \frac{4}{3a^{3} } [/tex] where [tex]a \neq 0[/tex]

Question 7: (Question is not written well)
[tex] \frac{x-5}{4x+8} [/tex]×[tex](12x^{2}+32x+8) [/tex]
[tex] \frac{12 x^{3}-28 x^{2} -152x-40 }{4x+8} [/tex]
By performing long division we get an answer [tex]3 x^{2} -x-36[/tex] with remainder of 248

Question 8:
[tex]( \frac{x^{2}-16} {x-1}) [/tex]÷[tex](x+4)[/tex]
[tex]( \frac{ x^{2}-16 }{x-1}) [/tex]×[tex] \frac{1}{x+4} [/tex]
[tex] \frac{(x+4)(x-1)}{x-1} [/tex]×[tex] \frac{1}{x+4} [/tex]
Cancelling out [tex]x+4[/tex] we obtain [tex] \frac{x+1}{x-1} [/tex]

Question 9:
[tex] \frac{x^{2}+2x+1} {x-2} [/tex]÷[tex] \frac{x^{2-1} }{x^{2}-4 } [/tex]
[tex] \frac{ x^{2}+2x+1 }{x-2} [/tex]×[tex] \frac{x^{2}-4 }{x^{2}-1} [/tex]
Factorise all the quadratic expression gives
[tex] \frac{(x+1)(x+1)}{x-2} [/tex]×[tex] \frac{(x-2)(x+2)}{(x+1)(x-1)} [/tex]
Cancelling out [tex](x+1)[/tex] and [tex](x-2)[/tex] gives a simplest form
[tex] \frac{(x+1)(x+2)}{x-1} [/tex]

Question 10:

[tex] \frac{24 w^{10}+8w^{12} }{4 x^{4} }= \frac{24w^{10} }{4 x^{4} } + \frac{8 w^{12} }{4 x^{4} } [/tex]
Cancelling out the constants of each fraction
[tex] \frac{6w^{10} }{x^{4} }+ \frac{2w^{12} }{x^{4}}= \frac{6w^{10}+2w^{12} }{ x^{4}} [/tex]

Question 11:

[tex] \frac{-6m^{9}-6m^{8}-16m^{6} }{2m^{3} } = \frac{-2m^{6}(3m^{3}-3m^{2}-8)}{2m^{3} } [/tex]
Cancelling [tex]2m^{3} [/tex] gives us the simplified form
[tex] -m^{3}(3m^{3}-3m^{2}-8) = -3m^{6}+3m^{5}+8m^{3} [/tex]

Question 12:

[tex] \frac{-4x}{x+7} - \frac{8}{x-7} = \frac{-4x(x-7)-8(x+7)}{(x+7)(x-7)} [/tex]
[tex] \frac{-4 x^{2} +28x-8x-56}{(x+7)(X-7)}= \frac{-4 x^{2} +20x-56}{(x+7)(x-7)} [/tex]
Factorising the numerator expression
[tex] \frac{(-4x+28)(x-2)}{(x+7)(x-7)} = \frac{-4(x-7)(x-2)}{(x+7)(x-7)} [/tex]
Cancelling out [tex]x-7[/tex] gives the simplified form
[tex] \frac{-4x+8}{x-7} [/tex]

Question 13:

[tex] \frac{3}{x-3} - \frac{5}{x-2}= \frac{x3(x-2)-5(x-2)}{y(x-3)(x-2)} [/tex]
[tex] \frac{3x-6-5x+15}{(x-3)(x-2)}= \frac{-2x+9}{(x-3)(x-2)} [/tex]

Question 14:

[tex] \frac{9}{x-1}- \frac{5}{x+4}= \frac{9(x+4)-5(x-1)}{(x-1)(x+4)} [/tex][tex] \frac{9x+36-5x+5}{(x-1)(x+4)}= \frac{4x+41}{(x-1)(x+4)} [/tex]

Question 15:

[tex] \frac{-3}{x+2}- \frac{(-5)}{x+3}= \frac{-3(x+3)-(-5)(x+2)}{(x+2)(x+3)} [/tex]
[tex] \frac{-3x-9+5x+10}{(x+2)(x+3)}= \frac{2x+1}{(x+2)(x+3)} [/tex]

Question 16:

[tex] \frac{4}{x}+ \frac{5}{x}=-3 [/tex]
[tex] \frac{9}{x}=-3 [/tex]
[tex]x=-3[/tex]

Question 17:

[tex] \frac{1}{3x-6}- \frac{5}{x-2}=12 [/tex]
[tex] \frac{(x-2)-5(3x-6)}{(3x-6)(x-2)} = \frac{x-2-15x+30}{(3x-6)(x-2)}= \frac{-14x+28}{(3x-6)(x-2)} [/tex]

Question 18


Ver imagen merlynthewhizz

** CORRECTIONS: Q1: It's 2x^3-29x+12; Q2,3,4,5,6: All conditions have ≠ symbol; Q7: it's (12x^2+32x+16); Q10: Option D should be divided by x^4; **

(1) Given:

Width = W = x+4

Area = A = [tex] 2x^3-29x+12 [/tex]

Length = L = ?

Since the pool is rectangular in shape:

area = width * length

A = W * L

Substitute:

[tex] 2x^3-29x+12 = (x+4) * L \\ L =\frac{2x^3-29x+12}{x+4} [/tex]

The long division is attached with the answer (below in the picture). Hence the correct answer is [tex] 2x^2-8x+3 [/tex] (Option C)

(2) Given expression:

[tex] \frac{x}{6x-x^2} \\ \frac{x}{x(6-x)} \\ \frac{1}{6-x} [/tex]

Where x ≠ 6. (Option B)

(3) Given :

[tex] \frac{-12 x^{4} }{x^{4}+8 x^{5} } [/tex]

Now simplify:

[tex] \frac{-12 x^{4} }{x^{4}+8 x^{5} }= \frac{-12 x^{4} }{ x^{4}(1+8x)}= \frac{-12}{1+8x} [/tex]

Where x ≠ -1/8 (Option A)

(4) Given:

[tex] \frac{x+5}{x^{2}+6x+5}[/tex]

Simplify:

[tex] \frac{x+5}{x^{2}+6x+5}= \frac{x+5}{(x+1)(x+5)}= \frac{1}{x+1} [/tex]

Where x ≠ -1 (Option A)

(5) Given:

[tex] \frac{x^{2}-3x-18} {x+3} [/tex]

Simplify:

[tex] \frac{x^{2}-3x-18} {x+3}= \frac{(x-6)(x+3)}{x+3}= \frac{x-6}{1}=x-6 [/tex] where x≠6 (Option C)

(6) Given:

[tex] \frac{2}{3a} .\frac{2}{a^2} [/tex]

Simplify:

[tex] \frac{4}{3a^{1+2}} = \frac{4}{3a^{3}} [/tex]

Where a ≠ 0 (Option C)

(7) Mathematically:

[tex] \frac{x-5}{4x + 8} * (12x^2+32x+16) [/tex]

Simplify:

[tex] \frac{x-5}{4x + 8} * (12x^2+32x+16) \\ \frac{x-5}{4(x + 2)} * 12x^2 + \frac{x-5}{4(x + 2)} * 32x + \frac{x-5}{4(x + 2)} * 16 \\ \frac{x-5}{(x + 2)} * 3x^2 + \frac{x-5}{(x + 2)} * 8x + \frac{x-5}{(x + 2)} * 4 \\ \frac{(x-5)(3x^2 + 8x + 4x) }{(x+2)} \\ \frac{(x-5)(3x^2 -6x - 2x + 4x) }{(x+2)} \\ \frac{(x-5)(3x+2)(x+2) }{(x+2)} \\ =(x-5)(3x+2) [/tex]

(Option C)

(8) Simplify:

[tex] \frac{( \frac{x^{2}-16} {x-1}) }{(x+4)} \\ \frac{( \frac{(x+4)(x-4)} {x-1}) }{(x+4)} \\ = \frac{(x-4)} {(x-1)} [/tex]

(Option A)

(9) Simplify:

[tex] \frac{ \frac{x^2+2x+1}{x-2}}{\frac{x^2-1}{x^2-4 }} \\ \frac{ \frac{(x+1)(x+1)}{x-2}}{\frac{(x+1)(x-1)}{(x-2)(x+2) }} \\ \frac{ \frac{(x+1)}{1}}{\frac{(x-1)}{(x+2) }} \\ = \frac{(x+1)(x+2)}{(x-1)} [/tex]

(Option A)

(10) Given:

[tex] \frac{24 w^{10}+8w^{12} }{4 x^{4} } [/tex]

Simplify:

[tex] \frac{24 w^{10}+8w^{12} }{4 x^{4} }= \frac{24w^{10} }{4 x^{4} } + \frac{8 w^{12} }{4 x^{4} } = \frac{6w^{10} }{x^{4} }+ \frac{2w^{12} }{x^{4}}= \frac{6w^{10}+2w^{12} }{ x^{4}} [/tex]

(Option D)

(11) Given:

[tex] \frac{-6m^{9}-6m^{8}-16m^{6} }{2m^{3} } [/tex]

Simplify:

[tex] \frac{-6m^{9}-6m^{8}-16m^{6} }{2m^{3} } = \frac{-2m^{6}(3m^{3}+3m^{2}+8)}{2m^{3} } = -m^{3}(3m^{3}+3m^{2}+8)\\ = -3m^{6}-3m^{5}-8m^{3} [/tex]

(Option C)

(12) Simplify:

[tex] \frac{-4x}{x+7} - \frac{8}{x-7} = \frac{-4x(x-7)-8(x+7)}{(x+7)(x-7)} \\ \frac{-4 x^{2} +28x-8x-56}{(x+7)(X-7)}= \frac{-4 x^{2} +20x-56}{(x+7)(x-7)} \\ \frac{(-4x+28)(x-2)}{(x+7)(x-7)} = \frac{-4(x-7)(x-2)}{(x+7)(x-7)} = \frac{-4x+8}{x+7} [/tex]

(Option A)

(13) Simplify:

[tex] \frac{3}{x-3} - \frac{5}{x-2} \\ = \frac{x3(x-2)-5(x-2)}{y(x-3)(x-2)} \\ \frac{3x-6-5x+15}{(x-3)(x-2)} \\= \frac{-2x+9}{(x-3)(x-2)} [/tex]

(Option A)

(14) Simplify:

[tex] \frac{9}{x-1}- \frac{5}{x+4}= \frac{9(x+4)-5(x-1)}{(x-1)(x+4)} \\ \frac{9x+36-5x+5}{(x-1)(x+4)}= \frac{4x+41}{(x-1)(x+4)} [/tex]

(Option B)

(15) Simplify:

[tex] \frac{-3}{x+2}- \frac{(-5)}{x+3}\\= \frac{-3(x+3)-(-5)(x+2)}{(x+2)(x+3)} \\ = \frac{-3x-9+5x+10}{(x+2)(x+3)}\\= \frac{2x+1}{(x+2)(x+3)} [/tex]

(Option D)

(16) Given:

4/x + 5/x = -3

Simplify:

(4+5)/x = -3

-3x = 9

x = -3 (Option C)

(17) Simplify:

[tex] \frac{1}{3x-6} - \frac{5}{x-2} = 12 \\ \frac{(x-2)-5(3x-6)}{(3x-6)(x-2)} = 12 \\ \frac{(x-2)-5*3(x-2)}{(3x-6)(x-2)} = 12 \\ \frac{-14(x-2)}{(3x-6)(x-2)} = 12 \\ \frac{-14}{(3x-6)} = 12\\ -14 = 12(3x-6) \\ -14 = 36x - 72 \\ 36x = 58 \\ x=\frac{29}{18} [/tex]

(Option D)

(18) Simplify:

[tex] \frac{1}{x} - \frac{6}{x^2} = -12 \\ \frac{x - 6}{x^2} = -12 \\ x-6 = -12x^2 \\ 12x^2 + x - 6 = 0 \\ 12x^2 + 9x - 8x - 6 = 0 \\ 3x(4x + 3) -2(4x + 3) =0 \\ (3x-2)(4x+3) =0 \\ => x =\frac{2}{3} , x =\frac{-3}{4} [/tex]

(Option C)

(19) Dorothy's rate (alone) will be:

[tex] R_D =\frac{1}{6} [/tex]

Rosanne's rate (alone) will be:

[tex] R_R =\frac{1}{8} [/tex]

If both work together, add both the rates:

[tex] R_T = R_D + R_R = \frac{1}{6} + \frac{1}{8} = \frac{7}{24} [/tex] (in 1/hours)

To find the hours, flip the rate:

[tex] \frac{24}{7} = 3.43 [/tex] hours (Option B)

(20) As pressure (p) is inversely proportional with volume (v):

p = k/v (where k is constant of proportionality)

k = pv

Find constant using initial values:

k = (104)(108)

k = 11232

Now new pressure is:

p = k/v = 11232/432 = 26 Pa (Option A)

(21)

x: 1,3,5,10

y: 4,12,20,40

Direct variation is the value of y increases with x. So,

y = 4x

If x = 1,y=4(1)=4

If x = 3,y=4(3)=12

If x = 5,y=20

If x = 10,y=40 (Option A)

(22) [tex] \frac{3}{4x+64} [/tex]

If x=-16,4(-16) + 64 = 0;denominator will become zero,which means that there will be discontinuity at x = -16. Hence, x=-16 (Option C) should be excluded.

Ver imagen IsrarAwan