Respuesta :

The answer is
y=5x^2-30x+39
(apex)

Answer:

[tex]y = 5x{^2} - 30x + 39[/tex]

Step-by-step explanation:

Given the vertex form of the equation of a parabola to be [tex]y = 5(x-3)^{2} - 6[/tex]

The standard form of the equation will be a quadratic equation in the form;

                           [tex]y = ax^{2} + bx + c[/tex]

where,

y is dependent variable

x is independent variable

a and b are constant coefficients of independent variable x² and x respectively

c is a constant

Transforming the vertex form to the standard form of a quadratic function y, we develop the equation:

                           [tex]y = 5(x-3)^{2} - 6[/tex]

                           [tex]y = 5(x-3)(x-3) - 6[/tex]

                           [tex]y = 5(x^{2} - 6x + 9) - 6[/tex]

                           [tex]y = 5x{^2} - 30x + 45 - 6[/tex]

                           [tex]y = 5x{^2} - 30x + 39[/tex]

The standard form of the equation is [tex]y = 5x{^2} - 30x + 39[/tex]