Respuesta :
Answer-
The integral roots are -2, 0.
Solution-
The given polynomial is,
[tex]x^4-4x^3-6x^2+12x[/tex]
For calculating the roots,
[tex]\Rightarrow x^4-4x^3-6x^2+12x=0[/tex]
[tex]\Rightarrow x(x^3-4x^2-6x+12)=0[/tex]
Decomposing the terms,
[tex]\Rightarrow x(x^3-6x^2+2x^2+6x-12x+12)=0[/tex]
Rearranging the terms,
[tex]\Rightarrow x(x^3-6x^2+6x+2x^2-12x+12)=0[/tex]
[tex]\Rightarrow x[x(x^2-6x+6)+2(x^2-6x+6)]=0[/tex]
[tex]\Rightarrow x[(x+2)(x^2-6x+6)]=0[/tex]
[tex]\Rightarrow x(x+2)(x^2-6x+6)=0[/tex]
[tex]\Rightarrow x=0,\ x=-2,\ x=\dfrac{-(-6)\pm \sqrt{(-6)^2-4\cdot 1\cdot 6}}{2\cdot 1}[/tex]
[tex]\Rightarrow x=0,\ x=-2,\ x=\dfrac{6\pm \sqrt{12}}{2}[/tex]
[tex]\Rightarrow x=0,\ x=-2,\ x=3\pm \sqrt{3}[/tex]
Therefore, the integral roots are -2, 0.
Answer:
The integral roots of the equation are 0 and -2.
Step-by-step explanation:
Here, the given equation,
[tex]x^4 - 4x^3 = 6x^2 - 12x[/tex]
[tex]x^4-4x^3-6x^2+12x=0[/tex]
[tex]x(x^3-4x^2-6x+12)=0[/tex] ------(1),
Since, [tex]x^3-4x^2-6x+12=0[/tex] at x = - 2,
Thus, x + 2 is a factor of [tex]x^3-4x^2-6x+12=0[/tex],
By dividing [tex]x^3-4x^2-6x+12=0[/tex] by (x+2),
We get, [tex]x^2-6x+6[/tex]
Hence,
[tex]x^3-4x^2-6x+12=(x+2)(x^2-6x+6)[/tex]
By equation (1),
[tex]x(x^3-4x^2-6x+12)=x(x+2)(x^2-6x+6)[/tex]
[tex]\implies x(x+2)(x^2-6x+6)=0[/tex]
[tex]\implies x(x+2)(x-(3+\sqrt{3}))(x-(3-\sqrt{3}))=0[/tex]
If x + 2 = 0 ⇒ x = -2,
While, if x - (3 ± √3 ) = 0 ⇒ x = 3 ± √ 3
Thus the roots of the given equation are, x = 0, - 2, 3 ± √3,
Since, 0 and - 2 are integers,
⇒ The integral roots of the equation are 0 and -2.