Respuesta :

Its Log (660/ 630), so Id go with Log62, B. 

Answer:

Option B - [tex]\log_6 60-\log_6 30=\log_6 (2)[/tex]                

Step-by-step explanation:

Given : Expression [tex]\log_6 60-\log_6 30[/tex]

To find : Solve the given expression?

Solution :

Step 1 - Write the expression

[tex]\log_6 60-\log_6 30[/tex]

Step 2 - Applying logarithmic property, [tex]\log a-\log b=\log(\frac{a}{b})[/tex]

[tex]\log_6 60-\log_6 30=\log_6 (\frac{60}{30})[/tex]

Bases are same.

Step 3 - Solve

[tex]\log_6 60-\log_6 30=\log_6 (2)[/tex]

Therefore, The solution of expression is

[tex]\log_6 60-\log_6 30=\log_6 (2)[/tex]

So, Option B is correct.