Write an equation in point-slope form for the line through the given point with the given slope.
(10, -6); m = -5/8


1. y - 6 = - 5/8 (x - 10)

2. y - 6 = - 5/8 (x + 10)

3. y + 6 = - 5/8 (x + 10)

4. y + 10 = - 5/8 (x + 6)

Respuesta :

msm555

Answer:

[tex]\tt y + 6 =-\dfrac{5}{8}(x - 10) [/tex]

Step-by-step explanation:

The point-slope form of a linear equation is given by:

[tex]\boxed{\tt y - y_1 = m(x - x_1)} [/tex]

where [tex]\tt (x_1, y_1)[/tex] is a point on the line and [tex]\tt m[/tex] is the slope.

In this case, the given point is [tex]\tt (10, -6)[/tex] and the slope is [tex]\tt m = -\dfrac{5}{8}[/tex].

Substitute these values into the point-slope formula:

[tex]\tt y - (-6) = -\dfrac{5}{8}(x - 10) [/tex]

Simplify the equation:

[tex]\tt y + 6 =-\dfrac{5}{8}(x - 10) [/tex]

So, the answer is:

[tex]\tt y + 6 =-\dfrac{5}{8}(x - 10) [/tex]

Answer:

[tex]\textsf{3)}\quad y+6=-\dfrac{5}{8}(x+10)[/tex]

Step-by-step explanation:

To write an equation in point-slope form for a line that passes through a given point with a given slope, we can use the point-slope formula:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Point-slope form of a linear equation}}\\\\y-y_1=m(x-x_1)\\\\\textsf{where:}\\ \phantom{ww}\bullet\;\textsf{$m$ is the slope.}\\\phantom{ww}\bullet\;\textsf{ $(x_1,y_1)$ is a point on the line.}\end{array}}[/tex]

In this case:

  • m = -5/8
  • (x₁, y₁) = (-10, -6)

Substitute the given slope and point into the point-slope formula:

[tex]y-(-6)=-\dfrac{5}{8}(x-(-10))[/tex]

Distribute the negative signs to the terms inside the parentheses:

[tex]y+6=-\dfrac{5}{8}(x+10)[/tex]

Therefore, the equation in point-slope form is:

[tex]\Large\boxed{\boxed{y+6=-\dfrac{5}{8}(x+10)}}[/tex]

Additional Notes

There appears to be a typing error in your original question. I believe the point should be (-10, -6).