Answer:
∠CDH = 58°
Step-by-step explanation:
Parallel lines and angles:
∠ACB = ∠DCF {Vertically opposite angles}
∠DCF =61°
BD // EI, AH is transversal,
∠GFH = ∠DCF {Corresponding angles}
= 61°
FG ≅ HG
∠GHF = ∠GFH {Isosceles triangle property}
∠GHF = 61°
In ΔCDH,
∠GHF + ∠DCH + ∠CDH = 180° {Angle sum property of triangle}
61 + 61 + ∠CDH = 180
122 + ∠CDH = 180
∠CDH = 180 - 122
∠CDH = 58°