Respuesta :
Answer:
Inverse function, [tex]f^{-1}=2^x[/tex]
Step-by-step explanation:
We are given a function [tex]f(x)=\log_2x[/tex]
We need to find the inverse of f(x)
Step 1: Set f(x)=y
[tex]y=\log_2x[/tex]
Step 2: Switch x and y
[tex]x=\log_2y[/tex]
Step 3: Solve for y (isolate y)
[tex]y=2^x[/tex] [tex]\because \log_ab=x\Rightarrow b=a^x[/tex]
Inverse of function [tex]f(x)\rightarrow f^{-1}(x)=2^x[/tex]
The inverse of the logarithmic function is [tex]f^{-1}(x) = 2^x[/tex]
The logarithmic expression is given as:
[tex]f(x) = \log_2(x)[/tex]
Replace f(x) with y
[tex]y = \log_2(x)[/tex]
Swap the positions of x and y
[tex]x = \log_2(y)[/tex]
Apply the change of base rule of logarithm
[tex]2^x = y[/tex]
Rewrite as:
[tex]y = 2^x[/tex]
Express y as an inverse function
[tex]f^{-1}(x) = 2^x[/tex]
Hence, the inverse of the logarithmic function is [tex]f^{-1}(x) = 2^x[/tex]
Read more about inverse functions at:
https://brainly.com/question/8120556