Respuesta :

i believe ur answer is 12 and is extraneous

Answer:

[tex]x=\frac{225}{16}[/tex] is an extraneous solution.      

Step-by-step explanation:

Given : Equation [tex]-4\sqrt x-3=12[/tex]

To find : Solve for x and identify if it is an extraneous solution?

Solution :

Step 1 - Write the equation,

[tex]-4\sqrt x-3=12[/tex]

Step 2 - Add 3 both sides,

[tex]-4\sqrt x-3+3=12+3[/tex]

[tex]-4\sqrt x=15[/tex]

Step 3 - Squaring both sides,

[tex](-4\sqrt x)^2=(15)^2[/tex]

[tex]16x=225[/tex]

Step 4 - Divide both side by 16,

[tex]\frac{16}{16}x=\frac{225}{16}[/tex]

[tex]x=\frac{225}{16}[/tex]

For extraneous solution, Substitute the value of x back in the equation.

[tex] -4\sqrt (\frac{225}{16})-3=12[/tex]

[tex]-4\times\frac{15}{4}-3=12[/tex]

 [tex]-15-3=12[/tex]

[tex]-18\neq12[/tex]

The value of x does not satisfy the equation which means the value of x is an extraneous solution.

So, [tex]x=\frac{225}{16}[/tex] is an extraneous solution.