Respuesta :
Actually this is a series of problem which forms a sentence by combining or adding the letters of the answers, the correct sentence that would form is:
ONE WEIGHS A POUND AND THE OTHER POUNDS AWAY
4 = O
1 1/3 = N
1 5/6 = E
7 3/10 = W
1 7/8 = E
9 = I
1 ¾ = G
3 = H
2 ¼ = S
4 4/5 = A
1 = P
5 1/6 = O
3 7/11 = U
1 5/8 = N
1 ½ = D
3 3/5 = A
1 2/3 = N
2 2/3 = D
17/10 = T
13/4 = H
37/5 = E
12/7 = O
19/8 = T
8/3 = H
19/12 = E
158/15 = R
39/4 = P
22/7 = O
59/24 = U
100/3 = N
50/9 = D
29/6 = S
9/2 = A
35/2 = W
23/5 = A
67/16 = Y
Refer the below solution for better understanding.
The correct sentence that would form is:
ONE WEIGHS A POUND AND THE OTHER POUNDS AWAY
Write each improper fraction either as a mixed number with fraction is lowest terms as a whole number. Write each mixed number as an improper fraction.
[tex]\rm O = 4[/tex]
[tex]\rm N = 1\dfrac{1}{3}[/tex]
[tex]\rm E = 1\dfrac{5}{6}[/tex]
[tex]\rm W = 7\dfrac{3}{10}[/tex]
[tex]\rm E = 1\dfrac{7}{8}[/tex]
[tex]\rm I = 9[/tex]
[tex]\rm G = 1\dfrac{3}{4}[/tex]
[tex]\rm H = 3[/tex]
[tex]\rm S = 2\dfrac{1}{4}[/tex]
[tex]\rm A = 4\dfrac{4}{5}[/tex]
[tex]\rm P = 1[/tex]
[tex]\rm O = 5\dfrac{1}{6}[/tex]
[tex]\rm U = 3\dfrac{7}{11}[/tex]
[tex]\rm N = 1\dfrac{5}{8}[/tex]
[tex]\rm D = 1\dfrac{1}{2}[/tex]
[tex]\rm A = 3\dfrac{3}{5}[/tex]
[tex]\rm N = 1\dfrac{2}{3}[/tex]
[tex]\rm D = 2\dfrac{2}{3}[/tex]
[tex]\rm T = \dfrac{17}{18}[/tex]
[tex]\rm H = \dfrac{13}{4}[/tex]
[tex]\rm E = \dfrac{37}{5}[/tex]
[tex]\rm O = \dfrac{12}{7}[/tex]
[tex]\rm T = \dfrac{19}{8}[/tex]
[tex]\rm E = \dfrac{19}{12}[/tex]
[tex]\rm R = \dfrac{158}{15}[/tex]
[tex]\rm P = \dfrac{39}{4}[/tex]
[tex]\rm O = \dfrac{22}{7}[/tex]
[tex]\rm U = \dfrac{59}{24}[/tex]
[tex]\rm N = \dfrac{100}{3}[/tex]
[tex]\rm D = \dfrac{50}{9}[/tex]
[tex]\rm S = \dfrac{29}{6}[/tex]
[tex]\rm A = \dfrac{9}{2}[/tex]
[tex]\rm W = \dfrac{35}{2}[/tex]
[tex]\rm A = \dfrac{23}{5}[/tex]
[tex]\rm Y = \dfrac{67}{16}[/tex]
For more information, refer the link given below
https://brainly.com/question/2263981