Respuesta :
Answer:
[tex](h\circ g)(4)=-\dfrac{11}{5}[/tex]
Step-by-step explanation:
Given: [tex]g(x)=\dfrac{8}{4-3x}[/tex]
[tex]h(y)=\dfrac{2y-9}{5}[/tex]
To find: [tex](h\circ g)(4)[/tex]
It is composite function (hog)(x) and to find the value at x=4
We can write (hog)(4) as h(g(4))
(hog)(4)=h(g(4))
Now, we find g(4)
[tex]g(4)=\dfrac{8}{4-3\cdot 4}[/tex]
[tex]g(4)=\dfrac{8}{4-12}[/tex]
[tex]g(4)=\dfrac{8}{-8}[/tex]
[tex]g(4)=-1[/tex]
Put g(4) into h(y)
[tex]h(g(4))=\dfrac{2\cdot g(4)-9}{5}[/tex]
[tex]h(g(4))=\dfrac{2\cdot -1-9}{5}[/tex]
[tex]h(g(4))=\dfrac{-2-9}{5}[/tex]
[tex]h(g(4))=-\dfrac{11}{5}[/tex]
Hence, The value of composite function is [tex]-\dfrac{11}{5}[/tex]